Data for "Influence of ionic liquids on enzymatic asymmetric carboligations"

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

N/A

Abstract

The asymmetric mixed carboligation of aldehydes catalyzed by thiamine diphosphate (ThDP)-dependent enzymes provides a sensitive system for monitoring changes in activity, chemo-, and enantioselectivity. While previous studies have shown that organic cosolvents influence these parameters, we now demonstrate that similar effects occur upon addition of water-miscible ionic liquids (ILs). In this study, six ThDP-dependent enzymes were analyzed in the presence of 14 ILs under comparable conditions to assess their influence on enzymatic carboligation reactions yielding 2-hydroxy ketones. ILs exerted a moderate to strong influence on activity and, more notably, altered enantioselectivity. (R)-selective reactions were generally stable upon IL addition, while (S)-selective reactions frequently showed reduced selectivity or even inversion to the (R)-enantiomer. The most significant change was observed for the ApPDC_E469G variant of pyruvate decarboxylase from Acetobacter pasteurianus, where the enantiomeric excess shifted from 86% (S) to 60% (R) in the presence of 9% (w/v) Ammoeng 102. Control experiments indicated that this shift was primarily due to the Ammoeng cation rather than the anion. To explore the molecular basis of this phenomenon, all-atom molecular dynamics (MD) simulations were performed on wild-type ApPDC and the E469G variant in Ammoeng 101 and Ammoeng 102. The simulations revealed that hydrophobic and hydrophilic regions of the Ammoeng cations interact with the (S)-selective binding pocket, thereby favoring formation of the (R)-product. These results highlight the potential of solvent engineering for modulating enzyme selectivity and demonstrate that MD simulations can capture functionally relevant enzyme–solvent interactions at the atomic level.

Description

Keywords

NATURAL SCIENCES::Chemistry::Molecular biophysics, NATURAL SCIENCES::Chemistry::Biochemistry::Structural biology, TECHNOLOGY::Bioengineering::Enzyme engineering, TECHNOLOGY::Bioengineering::Bioinformatics

Citation