Institute of Neurobiology
Permanent URI for this communityhttps://researchdata.hhu.de/handle/123456789/133
The Institute of Neurobiology at the HHU is devoted to the elucidation and study of intracellular ion dynamics in the vertebrate brain under physiological as well as pathophysiological conditions.
Browse
Browsing Institute of Neurobiology by Subject "NATURAL SCIENCES::Biology::Cell and molecular biology::Neurobiology"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Petersilie et al. 2024b - Figure 1(STAR Protocols, 2024) Petersilie, Laura; Kafitz, Karl W.; Neu, Louis A.; Heiduschka, Sonja; Le, Stephanie; Prigione, Alessandro; Rose, Christine R.Three-dimensional brain organoids from human pluripotent stem cells are a powerful tool for studying human neural networks. This article presents a refined protocol for generating robust brain organoid slices derived from regionalized cortical organoids and grown at the air-liquid interphase. The procedures for slicing organoids and maintaining them in long-term culture are described. We then detail approaches for quality control including evaluation of cell death and cellular identity. Finally, we describe procedures for expression of a genetically-encoded nanosensor for ATP.Item Petersilie et al. 2024b - Figure 2(STAR Protocols, 2024) Petersilie, Laura; Kafitz, Karl W.; Neu, Louis A.; Heiduschka, Sonja; Le, Stephanie; Prigione, Alessandro; Rose, Christine R.Three-dimensional brain organoids from human pluripotent stem cells are a powerful tool for studying human neural networks. This article presents a refined protocol for generating robust brain organoid slices derived from regionalized cortical organoids and grown at the air-liquid interphase. The procedures for slicing organoids and maintaining them in long-term culture are described. We then detail approaches for quality control including evaluation of cell death and cellular identity. Finally, we describe procedures for expression of a genetically-encoded nanosensor for ATP.Item Petersilie et al. 2024b - Figure 2(STAR Protocols, 2024) Petersilie, Laura; Kafitz, Karl W.; Neu, Louis A.; Heiduschka, Sonja; Le, Stephanie; Prigione, Alessandro; Rose, Christine R.Three-dimensional brain organoids from human pluripotent stem cells are a powerful tool for studying human neural networks. This article presents a refined protocol for generating robust brain organoid slices derived from regionalized cortical organoids and grown at the air-liquid interphase. The procedures for slicing organoids and maintaining them in long-term culture are described. We then detail approaches for quality control including evaluation of cell death and cellular identity. Finally, we describe procedures for expression of a genetically-encoded nanosensor for ATP.Item Petersilie et al. 2024b - Figure 3(STAR Protocols, 2024) Petersilie, Laura; Kafitz, Karl W.; Neu, Louis A.; Heiduschka, Sonja; Le, Stephanie; Prigione, Alessandro; Rose R., ChristineThree-dimensional brain organoids from human pluripotent stem cells are a powerful tool for studying human neural networks. This article presents a refined protocol for generating robust brain organoid slices derived from regionalized cortical organoids and grown at the air-liquid interphase. The procedures for slicing organoids and maintaining them in long-term culture are described. We then detail approaches for quality control including evaluation of cell death and cellular identity. Finally, we describe procedures for expression of a genetically-encoded nanosensor for ATP.Item Petersilie et al. 2024b - Figure 4(STAR Protocols, 2024) Petersilie, Laura; Kafitz, Karl W.; Neu, Louis A.; Heiduschka, Sonja; Le, Stephanie; Prigione, Alessandro; Rose, Christine R.Three-dimensional brain organoids from human pluripotent stem cells are a powerful tool for studying human neural networks. This article presents a refined protocol for generating robust brain organoid slices derived from regionalized cortical organoids and grown at the air-liquid interphase. The procedures for slicing organoids and maintaining them in long-term culture are described. We then detail approaches for quality control including evaluation of cell death and cellular identity. Finally, we describe procedures for expression of a genetically-encoded nanosensor for ATP.Item Petersilie et al. 2024b - Figure 5(STAR Protocols, 2024) Petersilie, Laura; Kafitz, Karl W.; Neu, Louis A.; Heiduschka, Sonja; Le, Stephanie; Prigione, Alessandro; Rose, Christine R.Three-dimensional brain organoids from human pluripotent stem cells are a powerful tool for studying human neural networks. This article presents a refined protocol for generating robust brain organoid slices derived from regionalized cortical organoids and grown at the air-liquid interphase. The procedures for slicing organoids and maintaining them in long-term culture are described. We then detail approaches for quality control including evaluation of cell death and cellular identity. Finally, we describe procedures for expression of a genetically-encoded nanosensor for ATP.